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Abstract 

This article gives a general outline of distributed 

intelligence and the reasons why this field needs 

further study. We next classify common DIS 

systems according to the interactions they often 

exhibit, as the interaction type is important to the 

solution paradigm. We provide three common 

models of distributed intelligence and illustrate how 

they might be applied to systems including several 

robots. Among these frameworks are the 

ontological, knowledge-based, and bio-inspired 

ones, as well as the organizational and social ones. 

Next, we take a look at the work allocation problem, 

which is common in multi-robot systems, and show 

how different problem abstraction paradigms lead to 

different solutions. We draw the conclusion that the 

two models are distinct and that the constraints and 

requirements of a given application should be 

considered while making a selection. System 

designers need more information to determine the 

appropriate abstraction (or paradigm) for each 

problem. 

Introduction 

information dispersed over a system Teams of living 

things that are able to learn, reason, plan, solve 

problems, understand ideas and language, and think 

abstractly are called systems with "distributed 

intelligence." Any intelligent being, whether it a 

human, a machine, a piece of code, or a physical 

object, might be considered a "entity" in this sense. 

Multiple players in such a system often take turns 

directing different aspects of the activity. Because 

our species has always thrived in collaborative 

settings, we are all used to using the expertise of 

other individuals. Management teams in 

corporations sometimes consist of individuals with 

titles such as chief executive officer, chief operating 

officer, chief financial officer, chief information 

officer, etc. Cancer patient care teams include of 

experts in several subspecialties such as medical 

oncology, surgical oncology, plastic and 

reconstructive surgery, pathology, and associated 

professions. Special operations units are only one 

example of how the military uses disseminated 

intelligence. Team A.polish your abilities in the 

domains of combat, engineering, healthcare, and 

speech. Catapult crews, landing signal officers, 

ordnance men, plane handlers, etc. are all examples 

of components that could be present on a military 

aircraft carrier. People have plainly figured out that 

these teams can do complex tasks much faster by 

using specialists that collaborate well. Cohesive 

systems including software agents, robotics, sensors, 

computers, and even people and animals (such as 

search and rescue dogs) are the aim of distributed 

intelligence in computer science and related fields. 

Urban search and rescue, transportation and 

logistics, computer security, gaming technology and 

simulation, military network-centric operations, and 

many more challenges might be solved by such 

systems. 

A Field Concerned With Distributed 

Intelligence 

Many different paradigms are being considered by 

researchers as potential approaches to distributed 

intelligence. These models aren't always the best fit 

for dispersed intelligence. That is why it is so 

important to study the many kinds of distributed 

intelligence that could arise in different settings. One 

way to learn more about the domain space is to look 

at all the potential interactions between the entities 

in a distributed intelligence system. Figure 2 shows 

three dimensions along which we think about 

interactions: the goals at play, the degree to which 

the entities engaged are aware of one another, and 

the extent to which each entity's actions contribute 

to the team's overall performance. Differentiating 

between systems is as simple as looking at whether 

their individual components work toward shared or 

independent goals. Along the axis of other people's 

awareness, the systems are categorized as either 

aware or unaware. In this context, "conscious" 

means that an entity may think about how its 

teammates act and what drives them. While non- 

aware robots can do things like detect adjacent items 

and maneuver to avoid them, they can't understand 

or predict what their coworkers are going to do next. 

The foundation of the functioning of several "un 

aware" systems is the idea of stigmergy, whereby 
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objects interact with one other without exchanging 

direct signals. As a last step, we divide systems into 

two camps: yes, when individual actions boost 

collective performance, and no, when they have no 

such effect (no). A floor-cleaning robot, working in 

tandem with other such robots, is an example of a 

thing whose actions serve to enhance the goals of 

other entities. One robot's floor cleaning efforts help 

the other robots in the team avoid re-cyling. 

Although these domain space divides are obviously 

approximations, we nonetheless find them helpful 

for understanding the most typical interactions in the 

actual world. A distributed intelligence system's 

numerous possible interactions are shown in this 

subspace. Conventional means of expression 

include: 

 

 

We go into more into about these kinds of 

interactions in the paragraphs that follow. 

Collective interactions are among the most basic 

forms of human contact; in these, members of the 

team work together toward a common objective 

while remaining oblivious to one another. Swarm 

robotics, which has been the subject of several 

studies (e.g., McClurkin 2004; Matara's 1995), is 

one example of such an intervention in MRS. 

 

 
Figure 1: Categorization of types of interactions in systems of 

distributed intelligence. 

(Kuba and Zhang, 1993). Biologically relevant tasks 

like foraging, traveling in big groups, herding 

animals, keeping a formation, etc., are the focus of 

this work's robotic system creation efforts. As the 

number of robots in a system increases, the global 

goal becomes an emergent feature of the local 

interactions, and the robots in the system commonly 

carry out very simple control rules at the local level. 

The second kind of contact is cooperative 

interaction, which happens when all parties engaged 

are aware of one other, share goals, and work 

together to achieve them. In multi-robot systems, for 

instance, robots might work together to transport a 

package (e.g., (Gerkey &Matari'c 2002)), tidy up a 

construction site (e.g., (Parker 1998)), perform a 

rescue mission (e.g., (Murphy 2000)), or even 

uncover the secrets of other planets (e.g., (Stroup et 

al., 2006)). Robots in such a system may have to 

coordinate their actions in the shared workspace to 

ensure that they don't block each other's path to the 

system's ultimate goal. Still, most of the time, the 

robots are working together to complete a common 

task.There is a third kind of interaction in distributed 

intelligence systems provided by autonomous robots 

that know what their teammates are up to and how 

their actions fit into the bigger picture. In the 

collaborative subset of the domain space, entities 

work together to achieve their distinct but 

complementary goals. Here, we differentiate 

between cooperative do main space and entities' 

capacities to cooperate in order to help each other 

accomplish their goals more effectively. 

Collaborative efforts are common in human research 

teams since everyone brings something unique to the 

table. Team members are all pulling in the same 

direction (doing their assigned study), but when they 

collaborate with individuals who have different 

backgrounds and experiences, their individual 

strengths will complement one another. It is possible 

for any organization to become cooperative by 

looking at the larger picture and reassessing its 

goals; in fact, the majority of these partnerships are 

cooperative as well. An example of collaborative 

cooperation would be a group of robots working 

together to accomplish common objectives. If a 

robot's sensors aren't able to get it where it needs to 

go, it might be able to work with others to 

accomplish what it needs to by sharing resources and 

improving each other's sensors. (Parker & Tang 

2006; Vig& Adams 2006) demonstrate such an 

alliance. The last and fourth kind of interaction in 

distributed intelligence is coordinated interaction. 

Even if they are aware of one another, the entities in 

these systems aren't cooperating to achieve a 

common goal, and their actions aren't helping the 

team succeed. When many robots are operating in 

close proximity to one another, collisions like this 

are common. It is crucial that the robots work 

together so that they don't interfere with each other. 

A number of methods for traffic management and 

multi-robot route planning have been developed for 

application in such settings, including (Kloser& 
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Hutchinson 2006; Guo & Parker 2002) and (Asama 

et al. 1991; Yuta & Pre mute 1992; Wang 1991). 

Additionally, we may have expanded our domain 

space by a third dimension to categorize systems 

based on whether they (1) aid other entities in 

achieving their objectives, (2) have no effect on 

other entities' ability to accomplish their objectives, 

or (3) hinder other entities' ability to achieve their 

objectives. This would let us create a new sort of 

interaction where each player acts in their own self- 

interest, is aware of the other participants, and still 

manages to obstruct the other participants' goals. 

This is the core of the hostile domain, where things 

collude to harm one another. Kitano et al. (1997), 

Browning et al. (2005), Veloso, Stone, & Han 

(1999), and Stone & Veloso (1999) are just a few of 

the many works that address this issue within the 

framework of multi-robot systems, and more 

especially multi-robot soccer. The military value of 

such collaboration is undeniable. 

Theories of Distributed Intelligence 

Different types of interactions in distributed 

intelligence systems need a wide variety of models 

for generating distributed intelligence. System 

designers may learn about successful ways to solve 

problems by looking at the problem space through 

the lens of each paradigm, which offers a different 

degree of abstraction. Similarities between human 

communities and ant colonies are a common theme 

in these models. Although paradigms may be 

helpful, they can't be applied to every interaction 

scenario. This section presents a synopsis of several 

popular models of distributed intelligence, focusing 

on their applicability to multi-robot systems. 

Remember that a major challenge with all of these 

models is determining how to achieve global 

coherence via the interaction of objects at the local 

level. Approaches to solve this problem that are 

complimentary are revealed at different levels of 

problem abstraction. 

The three most popular approaches to developing 

distributed intelligence systems are the knowledge- 

based, ontological, and semantic paradigms; the 

organizational and social paradigms; and the 

bioinspired, emergent swarms' paradigm. 

As part of our discussion of collective interactions 

in the preceding section, we delved into principles 

of the bioinspired swarms' paradigm. Assuming 

that entities can perceive meaningful information in 

their immediate environs (i.e., staggery) 

significantly reduces the necessity for 

communication between entities in this paradigm. 

To achieve the intended group behavior, these 

issues' application requirements permit basic action 

protocols, sometimes called control rules, that are 

the same for each entity. One local control rule that 

might lead to the agents' or robots' aggregation 

(like a swarm) under this scenario is 

 

 

For applications that can execute the same task in a 

distributed setting without complex entity-entity 

interactions and with generic entities, this paradigm 

works well. The first problem, predicting global 

behavior from a set of local control rules, and the 

second, determining local control rules given a 

desired global behavior, both provide substantial 

research challenges. Distributed applications like as 

flocking, schooling, foraging, chaining, searching, 

sorting, herding, aggregation, condensation, 

dispersion, confinement, formations, harvesting, 

deployment, and coverage might all be improved by 

adopting this model. Complex frameworks are 

required, however, to solve a wide range of 

interactions. 

Competition between Robot Models for 

Task Assignment in a Multi-Robot 

Setting 

We will examine three distinct methods of 

distributed intelligence systems and then compare 

and contrast how they handle a common issue in 

multi-robot systems: task distribution. Job allocation 

is a typical issue in multi-robot applications when 

the team's aim is divided into distinct jobs, as 

previously mentioned. From one job to another, 

diverse robots are up to the challenge. Although 

separate tasks may be worked on concurrently, 

dependent tasks must be finished in a certain 

sequence to take their interdependencies into 

consideration. After the tasks are determined, the 

next step is to determine the best strategy to allocate 

robots to each task in order to maximize an objective 

function. Splitting up tasks like this is a problem. 

Gerkey and Matara (2004) demonstrated that finding 

the best solution to the general problem of job 

allocation is NP-hard. This problem is so often 

addressed by using approximations that are practical 

and acceptable. Think about how the 

aforementioned paradigms may solve the multi- 

robot work allocation challenge. Before anything 
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else, the bioinspired approach to task allocation 

often assumes a large number of similar robots. Any 

robot in the immediate area that is aware of the 

requirement to complete a task may be assigned that 

duty if it volunteers to do so. In order to avoid using 

direct communication, robots may use staggery to 

determine what to do. Robots may be replaced if 

they malfunction. For optimal performance, all 

robots should adhere to this principle. Second, roles 

may be used to organize the allocation of jobs, 

similar to what we stated before for multi-robot 

soccer. Each job has its own set of specific tasks, and 

robots choose roles according to their strengths. 

Robots in this setting don't have to be standardized 

in terms of their sensing, computation, and effector 

abilities.As an alternative method of running the 

business, the market-based approach to allocation 

was also put out. Robots use these techniques to 

bargain for employment by being transparent about 

their skills and making offers based on what they can 

bring to the table. It is common practice to allocate 

tasks to the robot with the highest potential 

efficiency. Because it was the first protocol to 

address the question of how agents may contract to 

fulfill a set of tasks collectively, the Contract Net 

Protocol (Smith, 1980) is important here. According 

to Botelho and Alami (1999), the M+ architecture 

pioneered the use of a market-based technique to 

assign work to many robots. Every robot in the M+ 

approach comes up with its own plan to achieve its 

goal. Afterwards, they make use of social 

conventions that permit the slow merging of plans as 

they bargain with other team members to 

progressively modify their actions such that they 

optimally benefit the team overall. Last but not least, 

multi-robot teams employ the knowledge-based 

approach to distribute tasks by simulating the 

abilities of each team member. One of the several 

possible variations is the ALLIANCE approach 

(Parker, 1998), where robots mimic human team 

members' abilities to do system tasks by observing 

how well team members work and gathering crucial 

job quality data, such the amount of time it takes to 

complete a task. Based on these models, the robots 

then determine which tasks would benefit the team 

the most. Using this approach, assigning duties does 

not need direct communication. Additional 

approaches become possible with the use of trained 

models of teammates' abilities. As these examples of 

task distribution demonstrate, the abstraction 

paradigm used determines the number of viable 

solutions to a specific problem in multi-robot 

systems. In different situations, each paradigm has 

its own set of advantages and disadvantages. The 

constraints and requirements of the application 

determine the best paradigm to use. 

Conclusions 

We have covered the various potential interactions 

between distributed systems, presented several 

important ideas in distributed intelligence, and 

highlighted some of the most common techniques to 

obtaining distributed intelligence in this article. We 

have shown the different interactions and paradigms 

using examples from the field of multi-robot systems 

so that you can better grasp the challenges. This 

round of arguments has shown us that the details of 

each application determine which paradigm is best 

suited to solve a particular issue. We also note that 

in complex systems, several robot paradigms may 

coexist. One way to define roles for the high-level 

abstraction is through an organizational paradigm. 

Another way is to deploy mobile networks using a 

knowledge-based modeling approach. Lastly, when 

creating a mobile sensor network, one can take a bio-

inspired approach (Howard, Parker, &Sukhumi, 

2006). System designers are tasked with creating and 

implementing paradigms that are customized to 

meet the specific needs of each application. 
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